Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659083

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Assuntos
Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T , Humanos , Concentração de Íons de Hidrogênio , Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Técnicas de Cultura de Células
2.
Cytotherapy ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38625071

RESUMO

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.

3.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38298420

RESUMO

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

4.
J Transl Med ; 22(1): 181, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374090

RESUMO

The clinical application of cell therapies is becoming increasingly important for the treatment of cancer, congenital immune deficiencies, and hemoglobinopathies. These therapies have been primarily manufactured and used at academic medical centers. However, cell therapies are now increasingly being produced in centralized manufacturing facilities and shipped to medical centers for administration. Typically, these cell therapies are produced from a patient's own cells, which are the critical starting material. For these therapies to achieve their full potential, more medical centers must develop the infrastructure to collect, label, cryopreserve, test, and ship these cells to the centralized laboratories where these cell therapies are manufactured. Medical centers must also develop systems to receive, store, and infuse the finished cell therapy products. Since most cell therapies are cryopreserved for shipment and storage, medical centers using these therapies will require access to liquid nitrogen product storage tanks and develop procedures to thaw cell therapies. These services could be provided by the hospital pharmacy or transfusion service, but the latter is likely most appropriate. Another barrier to implementing these services is the variability among providers of these cell therapies in the processes related to handling cell therapies. The provision of these services by medical centers would be facilitated by establishing a national coordinating center and a network of apheresis centers to collect and cryopreserve the cells needed to begin the manufacturing process and cell therapy laboratories to store and issue the cells. In addition to organizing cell collections, the coordinating center could establish uniform practices for collecting, labeling, shipping, receiving, thawing, and infusing the cell therapy.


Assuntos
Centros Médicos Acadêmicos , Terapia Baseada em Transplante de Células e Tecidos , Humanos
5.
Clin Chem ; 70(1): 116-127, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175598

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of hematologic malignancies and holds promise for solid tumors. While responses to CAR T-cell therapy have surpassed other available options for patients with refractory malignancies, not all patients respond the same way. The reason for this variability is not currently understood. Therefore, there is a strong need to identify characteristics of patients as well as cellular products that lead to an effective response to CAR T-cell therapy. CONTENT: In this review, we discuss potential biomarkers that may predict clinical outcomes of CAR T-cell therapy. Based on correlative findings from clinical trials of both commercially available and early-phase products, we classify biomarkers into categories of pre- and post-infusion as well as patient and product-related markers. Among the biomarkers that have been explored, measures of disease burden both pre- and post-infusion, as well as CAR T-cell persistence post-infusion, are repeatedly identified as predictors of disease response. Higher proportions of early memory T cells at infusion appear to be favorable, and tracking T-cell subsets throughout treatment will likely be critical. SUMMARY: There are a growing number of promising biomarkers of CAR T-cell efficacy described in the research setting, however, none of these have been validated for clinical use. Some potentially important predictors of response may be difficult to obtain routinely under the current CAR T-cell therapy workflow. A collaborative approach is needed to select biomarkers that can be validated in large cohorts and incorporated into clinical practice.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Biomarcadores , Efeitos Psicossociais da Doença , Terapia Baseada em Transplante de Células e Tecidos
6.
Transfusion ; 64(2): 357-366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173340

RESUMO

BACKGROUND: Healthcare center-based cell therapy laboratories (HC CTLs) evolved from solely processing hematopoietic stem cells for transplantation to manufacturing various advanced cellular therapies. With increasing interest in cellular therapy applications, off-site manufactured products are becoming more common. HC CTLs play a critical role in supporting these products by shipping out cellular starting material (CSM) for further manufacturing and/or receiving, storing, and distributing final products. The experiences and challenges encountered by a single academic HC CTL in supporting these products are presented. METHODS: All off-site manufacturing protocols supported before 2023 were reviewed. Collected data included protocol characteristics (treatment indication, product type), process logistics (shipping, receiving, storage, thawing, distribution, documentation), and product handling volumes (CSM shipping and final product infusions). RESULTS: Between 2012 and 2022, 15 off-site manufactured cellular therapy early-phase, single- and multicenter clinical trials were supported. Trials were sponsored by academic/research and commercial entities. The number of protocols supported annually increased each year, with few ending. Products included cancer immunotherapies and gene therapies. Autologous CSM was collected and shipped, while autologous and allogeneic final products were received, stored, thawed, and distributed. Process differences among protocols included CSM shipping conditions, laboratory analyses, final product thaw conditions and procedures, number of treatments, and documentation. DISCUSSION: HC CTLs must contend with several challenges in supporting off-site manufacturing protocols. As demand for cellular therapies increases, stakeholders should collaborate from the early phases of clinical trials to streamline processes and standardize procedures to increase value, improve safety, and reduce the burden on HC CTLs.


Assuntos
Células-Tronco Hematopoéticas , Laboratórios , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia , Atenção à Saúde
7.
Blood Adv ; 8(3): 802-814, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37939262

RESUMO

ABSTRACT: New treatments are needed for relapsed and refractory CD30-expressing lymphomas. We developed a novel anti-CD30 chimeric antigen receptor (CAR), designated 5F11-28Z. Safety and feasibility of 5F11-28Z-transduced T cells (5F11-Ts) were evaluated in a phase 1 dose escalation clinical trial. Patients with CD30-expressing lymphomas received 300 mg/m2 or 500 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine on days -5 to -3, followed by infusion of 5F11-Ts on day 0. Twenty-one patients received 5F11-T infusions. Twenty patients had classical Hodgkin lymphoma, and 1 had anaplastic large-cell lymphoma. Patients were heavily pretreated, with a median of 7 prior lines of therapy and substantial tumor burden, with a median metabolic tumor volume of 66.1 mL (range, 6.4-486.7 mL). The overall response rate was 43%; 1 patient achieved a complete remission. Median event-free survival was 13 weeks. Eleven patients had cytokine release syndrome (CRS; 52%). One patient had grade 3 CRS, and there was no grade 4/5 CRS. Neurologic toxicity was minimal. Nine patients (43%) had new-onset rashes. Two patients (9.5%) received extended courses of corticosteroids for prolonged severe rashes. Five patients (24%) had grade 3/4 cytopenias, with recovery time of ≥30 days, and 2 of these patients (9.5%) had prolonged cytopenias with courses complicated by life-threatening sepsis. The trial was halted early because of toxicity. Median peak blood CAR+ cells per µL was 26 (range, 1-513 cells per µL), but no infiltration of CAR+ cells was detected in lymph node biopsies. 5F11-Ts had low efficacy and substantial toxicities, which limit further development of 5F11-Ts. This trial was registered at www.clinicaltrials.gov as #NCT03049449.


Assuntos
Doença de Hodgkin , Linfoma Anaplásico de Células Grandes , Linfoma , Receptores de Antígenos Quiméricos , Humanos , Doença de Hodgkin/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/terapia , Linfócitos T , Receptores de Antígenos Quiméricos/uso terapêutico
8.
Transplant Cell Ther ; 30(1): 120.e1-120.e10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37797720

RESUMO

Unrelated donor peripheral blood stem cell (PBSC) products often require transport to distant locations, which may take up to 72 hours. Temperature is an important variable that can be controlled during PBSC storage or transport; therefore, we studied the impact of temperature on prolonged storage of clinical-grade, mobilized PBSC products. PBSC products were collected by apheresis from 3 granulocyte colony-stimulating factor-mobilized donors, split into 2 PVC blood bags of equal volume, and stored at room temperature (RT) (18°C to 25 ºC) or 4 °C (2°C to 8 ºC) for 96 hours. Samples were obtained at 24-hour intervals for pH, cell counts, flow cytometry phenotyping and viability (7AAD), and hematopoietic colony-forming units (CFU). Starting PBSC products contained 52, 65, and 38 × 109 total nucleated cells (TNCs), with cell concentrations of 125, 263, and 94.6 × 106 TNCs/mL, respectively. Product pH dropped during storage, with significantly lower values for RT stored products than for 4 ºC stored products, and was greatest in the product with the highest TNC count. The percent recovery of viable CD34+ progenitor cells, CD3+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD19+ B cells, CD15+ granulocytes, CD14+ monocytes, and CD16+/56+ natural killer (NK) cells all decreased over 96 hours but decreased more dramatically in the RT group. Cell recovery differences were statistically significant at most time points for all cell populations except CD15+ granulocytes. For CD34+ cells stored at 4 °C, mean recovery from prestorage values were 97 ± 3% at 24 hours, 87 ± 4% at 48 hours, 88 ± 10% at 72 hours, and 78 ± 1% at 96 hours, compared to RT product values of 45 ± 11%, 19 ± 19%, 2 ± 2%, and 0 ± 0%, respectively. CFUs were well preserved through 96 hours at 4 ºC but not at RT. During PBSC storage, pH and content of viable CD34+ cells, T cells, B cells, monocytes, NK cells, and CFU all declined. However, at 4 ºC, viable cell recoveries are relatively well preserved, even at 72 hours, whereas RT storage resulted in rapid product deterioration. PBSC products requiring prolonged liquid storage or transport before cryopreservation or infusion should be maintained at 4 ºC.


Assuntos
Células-Tronco de Sangue Periférico , Temperatura , Células-Tronco Hematopoéticas , Antígenos CD34/farmacologia , Criopreservação/métodos
9.
Cytotherapy ; 26(2): 201-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085197

RESUMO

BACKGROUND AIMS: Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products. METHODS: Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated. A viability standard was established using live and dead cell mixtures to assess the accuracy of these assays. Furthermore, precision assessment was conducted to determine the reproducibility of the viability assays. Additionally, the viability of individual cell populations from cryopreserved PBSC and PBMC apheresis products was examined. RESULTS: All methods provided accurate viability measurements and generated consistent and reproducible viability data. The assessed viability assays were demonstrated to be reliable alternatives when evaluating the viability of fresh cellular products. However, cryopreserved products exhibited variability among the tested assays. Additionally, analyzing the viability of each subset of the cryopreserved PBSC and PBMC apheresis products revealed that T cells and granulocytes were more susceptible to the freeze-thaw process, showing decreased viability. CONCLUSIONS: The study demonstrates the importance of careful assay selection, validation and standardization, particularly for assessing the viability of cryopreserved products. Given the complexity of cellular products, choosing a fit-for-purpose viability assay is essential.


Assuntos
Leucócitos Mononucleares , Azul Tripano , Reprodutibilidade dos Testes , Sobrevivência Celular , Criopreservação/métodos , Citometria de Fluxo/métodos
10.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38155568

RESUMO

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Medula Óssea/metabolismo
11.
Cancer Cell ; 42(1): 35-51.e8, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134936

RESUMO

Chimeric antigen receptor T cells (CAR-Ts) have remarkable efficacy in liquid tumors, but limited responses in solid tumors. We conducted a Phase I trial (NCT02107963) of GD2 CAR-Ts (GD2-CAR.OX40.28.z.iC9), demonstrating feasibility and safety of administration in children and young adults with osteosarcoma and neuroblastoma. Since CAR-T efficacy requires adequate CAR-T expansion, patients were grouped into good or poor expanders across dose levels. Patient samples were evaluated by multi-dimensional proteomic, transcriptomic, and epigenetic analyses. T cell assessments identified naive T cells in pre-treatment apheresis associated with good expansion, and exhausted T cells in CAR-T products with poor expansion. Myeloid cell assessment identified CXCR3+ monocytes in pre-treatment apheresis associated with good expansion. Longitudinal analysis of post-treatment samples identified increased CXCR3- classical monocytes in all groups as CAR-T numbers waned. Together, our data uncover mediators of CAR-T biology and correlates of expansion that could be utilized to advance immunotherapies for solid tumor patients.


Assuntos
Neuroblastoma , Receptores de Antígenos Quiméricos , Criança , Adulto Jovem , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Proteômica , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfócitos T , Neuroblastoma/patologia , Terapia Baseada em Transplante de Células e Tecidos
12.
Cytotherapy ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043052

RESUMO

BACKGROUND AIMS: Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods, source material and culture media. The purpose of this multicenter study was to assess the impact on MSC expansion, gene expression and other characteristics when different laboratories expanded MSCs from cultures initiated with bone marrow-MSC aliquots derived from the same donor source material yet with different growth media. METHODS: Eight centers expanded MSCs using four human platelet lysate (HPL) and one fetal bovine serum (FBS) products as media supplements. The expanded cells were taken through two passages then assessed for cell count, viability, doubling time, immunophenotype, cell function, immunosuppression and gene expression. Results were analyzed by growth media and by center. RESULTS: Center methodologies varied by their local seeding density, feeding regimen, inoculation density, base media and other growth media features (antibiotics, glutamine, serum). Doubling times were more dependent on center than on media supplements. Two centers had appropriate immunophenotyping showing all MSC cultures were positive for CD105, CD73, CD90 and negative for CD34, CD45, CD14, HLA-DR. MSCs cultured in media supplemented with FBS compared with HPL featured greater T-cell inhibition potential. Gene expression analysis showed greater impact of the type of media supplement (HPL versus FBS) than the manufacturing center. Specifically, nine genes were decreased in expression and six increased when combining the four HPL-grown MSCs versus FBS (false discovery rate [FDR] <0.01), however, without significant difference between different sources of HPL (FDR <0.01). CONCLUSIONS: Local manufacturing process plays a critical role in MSC expansion while growth media may influence function and gene expression. All HPL and FBS products supported cell growth.

13.
Cancer Cell ; 41(10): 1689-1695, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714150

RESUMO

Successful implementation of adoptive cell therapy (ACT) of cancer requires comprehensively addressing biological and practical challenges. This approach has been largely overlooked, resulting in a gap between the potential of ACT and its actual effectiveness. We summarize the most promising technical strategies in creating an "ideal" ACT product, focusing on chimeric antigen receptor (CAR)-engineered cells. Since many requirements for effective ACT are common to most cancers, what we outline here might have a broader impact.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
14.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686058

RESUMO

Adoptive transfer of cultured BMSCs was shown to be immune-suppressive in various inflammatory settings. Many factors play a role in the process, but no master regulator of BMSC-driven immunomodulation was identified. Consequently, an assay that might predict BMSC product efficacy is still unavailable. Below, we show that BMSC donor variability can be monitored by IL-10 production of monocytes/macrophages using THP-1 cells (immortalized monocytic leukemia cells) co-cultured with BMSCs. Using a mixed lymphocyte reaction (MLR) assay, we also compared the ability of the different donor BMSCs to suppress T-cell proliferation, another measure of their immune-suppressive ability. We found that the BMSCs from a donor that induced the most IL-10 production were also the most efficient in suppressing T-cell proliferation. Transcriptome studies showed that the most potent BMSC batch also had higher expression of several known key immunomodulatory molecules such as hepatocyte growth factor (HGF), PDL1, and numerous members of the PGE2 pathway, including PTGS1 and TLR4. Multiplex ELISA experiments revealed higher expression of HGF and IL6 by the most potent BMSC donor. Based on these findings, we propose that THP-1 cells may be used to assess BMSC immunosuppressive activity as a product characterization assay.


Assuntos
Medula Óssea , Leucemia Monocítica Aguda , Humanos , Projetos Piloto , Interleucina-10 , Linhagem Celular , Células Estromais
15.
Transplant Cell Ther ; 29(9): 574.e1-574.e10, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394115

RESUMO

Outcomes for post-chimeric antigen receptor (CAR) T cell therapy (CART) relapse are poor. The utilization of a unique CAR T cell construct for post-CART failure is increasing, but this approach is not well described. In this study, with CART-A the first unique CAR T cell construct received and CART-B the second, the primary objective was to characterize outcomes following CART-B. Secondary objectives included evaluating safety and toxicity with sequential CART infusions; investigating the impact of potential factors, such as antigen modulation and interval therapy, on CART-B response; and characterizing long-term outcomes in patients receiving multiple CARTs. This was a retrospective review (NCT03827343) of children and young adults with B cell acute lymphoblastic leukemia (B-ALL) undergoing CART therapy who received at least 2 unique CART constructs, excluding interim CART reinfusions of the same product. Of 135 patients, 61 (45.1%) received 2 unique CART constructs, including 13 who received >2 CARTs over time. Patients included in this analysis received 14 distinct CARTs targeting CD19 and/or CD22. The median age at CART-A was 12.6 years (range, 3.3 to 30.4 years). The median time from CART-A to CART-B was 302 days (range, 53 to 1183 days). CART-B targeted a different antigen than CART-A in 48 patients (78.7%), owing primarily to loss of CART-A antigen target. The rate of complete remission (CR) was lower with CART-B (65.5%; 40 of 61) than with CART-A (88.5%; 54 of 61; P = .0043); 35 of 40 (87.5%) CART-B responders had CART-B targeting a different antigen than CART-A. Among the 21 patients with a partial response or nonresponse to CART-B, 8 (38.1%) received CART-B with the same antigen target as CART-A. Of 40 patients with CART-B complete response (CR), 29 (72.5%) relapsed. For the 21 patients with evaluable data, the relapse immunophenotype was antigennegative in 3 (14.3%), antigendim in 7 (33.3%), antigenpositive in 10 (47.6%), and lineage switch in 1 (4.8%). The median relapse-free survival following CART-B CR was 9.4 months (95% confidence interval [CI], 6.1 to 13.2 months), and overall survival was 15.0 months (95% CI, 13.0 to 22.7 months). Given the limited salvage options for post-CART relapse, identifying optimizing strategies for CART-B is critical. We raise awareness about the emerging use of CART for post-CART failure and highlight clinical implications accompanying this paradigm shift.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores de Antígenos Quiméricos , Criança , Adulto Jovem , Humanos , Pré-Escolar , Adolescente , Adulto , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T , Terapia de Salvação , Imunoterapia Adotiva/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Recidiva
16.
Cell Rep Methods ; 3(4): 100460, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159663

RESUMO

Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Saco Vitelino , Células-Tronco Hematopoéticas , Organoides , Atividades Cotidianas
17.
Cytotherapy ; 25(6): 598-604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36935289

RESUMO

BACKGROUND AIMS: Reference genes are an essential part of clinical assays such as droplet digital polymerase chain reaction (ddPCR), which measure the number of copies of vector integrated into genetically engineered cells and the loss of plasmids in reprogrammed cells used in clinical cell therapies. Care should be taken to select reference genes, because it has been discovered that there may be thousands of variations in copy number from genomic segments among different individuals. In addition, within the same person in the context of cancer and other proliferative disorders, substantial parts of the genome also can differ in copy number between cells from diseased and healthy people. The purpose of this study was to identify reference genes that could be used for copy number variation analysis of transduced chimeric antigen receptor T cells and for plasmid loss analysis in induced pluripotent stem cells using ddPCR. METHODS: We used The Cancer Genome Atlas (TCGA) to evaluate candidate reference genes. If TCGA found a candidate gene to have low copy number variance in cancer, ddPCR was used to measure the copy numbers of the potential reference gene in cells from healthy subjects, cancer cell lines and patients with acute lymphocytic leukemia, lymphoma, multiple myeloma and human papillomavirus-associated cancers. RESULTS: In addition to the rPP30 gene, which we have has been using in our copy number assays, three other candidate reference genes were evaluated using TCGA, and this analysis found that none of the four gene regions (AGO1, AP3B1, MKL2 and rPP30) were amplified or deleted in all of the cancer cell types that are currently being treated with cellular therapies by our facility. The number of copies of the genes AP3B1, AGO1, rPP30 and MKL2 measured by ddPCR was similar among cells from healthy subjects. We found that AGO1 had copy number alteration in some of the clinical samples, and the number of copies of the genes AP3B1, MKL2 and rPP30 measured by ddPCR was similar among cells from patients with the cancer cell types that are currently being treated with genetically engineered T-cell therapies by our facility. CONCLUSIONS: Based on our current results, the three genes, AP3B1, MKL2 and rPP30, are suitable for use as reference genes for assays measuring vector copy number in chimeric antigen receptor T cells produced from patients with acute leukemia, lymphoma, multiple myeloma and human papillomavirus-associated cancers. We will continue to evaluate AGO1 on our future samples.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Variações do Número de Cópias de DNA/genética , Receptores de Antígenos Quiméricos/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Linfócitos T , Reação em Cadeia da Polimerase/métodos
18.
Transfusion ; 63(4): 774-781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975826

RESUMO

BACKGROUND: Since the beginning of the COVID-19 pandemic, cryopreservation of hematopoietic progenitor cell (HPC) products has been increasingly used to ensure allogeneic donor graft availability prior to recipient conditioning for transplantation. However, in addition to variables such as graft transport duration and storage conditions, the cryopreservation process itself may adversely affect graft quality. Furthermore, the optimal methods to assess graft quality have not yet been determined. STUDY DESIGN AND METHODS: A retrospective review was performed on all cryopreserved HPCs processed and thawed at our facility from 2007 to 2020, including both those collected onsite and by the National Marrow Donor Program (NMDP). HPC viability studies were also performed on fresh products, retention vials, and corresponding final thawed products by staining for 7-AAD (flow cytometry), AO/PI (Cellometer), and trypan blue (manual microscopy). Comparisons were made using the Mann-Whitney test. RESULTS: For HPC products collected by apheresis (HPC(A)), pre-cryopreservation and post-thaw viabilities, as well as total nucleated cell recoveries were lower for products collected by the NMDP compared to those collected onsite. However, there were no differences seen in CD34+ cell recoveries. Greater variation in viability testing was observed using image-based assays compared to flow-based assays, and on cryo-thawed versus fresh samples. No significant differences were observed between viability measurements obtained on retention vials versus corresponding final thawed product bags. DISCUSSION: Our studies suggest extended transport may contribute to lower post-thaw viabilities, but without affecting CD34+ cell recoveries. To assess HPC viability prior to thaw, testing of retention vials offers predictive utility, particularly when automated analyzers are used.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Pandemias , Células-Tronco Hematopoéticas , Criopreservação/métodos , Antígenos CD34 , Sobrevivência Celular
20.
Mol Ther Methods Clin Dev ; 28: 51-61, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620075

RESUMO

Cryopreservation of chimeric antigen receptor (CAR) T cells facilitates shipment, timing of infusions, and storage of subsequent doses. However, reports on the impact of cryopreservation on CAR T cell efficacy have been mixed. We retrospectively compared clinical outcomes between patients who received cryopreserved versus fresh CAR T cells for treatment of B cell leukemia across two cohorts of pediatric and young adult patients: those who received anti-CD22 CAR T cells and those who received bispecific anti-CD19/22 CAR T cells. Manufacturing methods were consistent within each trial but differed between the two trials, allowing for exploration of cryopreservation within different manufacturing platforms. Among 40 patients who received anti-CD22 CAR T cells (21 cryopreserved cells and 19 fresh), there were no differences in in vivo expansion, persistence, incidence of toxicities, or disease response between groups with cryopreserved and fresh CAR T cells. Among 19 patients who received anti-CD19/22 CAR T cells (11 cryopreserved and 8 fresh), patients with cryopreserved cells had similar expansion, toxicity incidence, and disease response, with decreased CAR T cell persistence. Overall, our data demonstrate efficacy of cryopreserved CAR T cells as comparable to fresh infusions, supporting cryopreservation, which will be crucial for advancing the field of cell therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...